

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Thermodynamics (18ME0309)

Course & Branch: B.Tech - ME

Year & Sem: II-B. Tech & II-Sem

Regulation: R18

<u>UNIT –I</u>

1		What is a thermodynamic system? Explain different classes of systems with	L1,	10M
		suitable examples.	L2	10101
2	a)	Define the following	T 1	5M
		a) Enthalpy b) Internal Energy	LI	JIVI
	b)	What is quasi static process? Explain in detail?	L2	5M
3	a)	List the difference between a closed system and an open system.	L4	5M
	b)	Compare the cyclic process and non-cyclic process.	L5	5M
4	a)	Define the following thermodynamic properties a) Pressure b) Temperature c) volume d) Density	L1	5M
	b)	What do mean by property? Distinguish between intensive and extensive	L1,	5M
			L4	
5	a)	What is meant by thermodynamics equilibrium? Explains its types briefly.	L1, L2	5M
	b)	Recall thermodynamic system control volume.	L1	5M
6		Explain the different relationships with system and surroundings in detail.	L4	10M
7	a)	What do you understand by path function and point function? What are the exact and inexact differentials?	L2	5M
	b)	Show that work is a path function and not a property.	L2	5M
8		Classify different work transfers? Explain any three types.	L4	10M
9	a)	Classify the differences between heat and work transfers?	L4	5M
	b)	Explain about Heat transfer.	L2	5M
10		Explain the following terms		
		a) State	L2	2M
		b) Path	L2	2M
		c) Process	L2	2M
		d) Cyclic process	L2	2M
		e) System.	L2	2M

1	a)	Explain zer	roth law of thermodynam	ics		L2	5M
	b)	Define Heat Temperature and concept of thermal Equilibrium				1 1	5M
2	c)	Define first	Define Heat, Temperature and concept of thermal Equilibrium.				JIVI
Z	a)	of the syste	of the system.			LI, L5	5M
	b)	A Stationar of 0.3 m ³ pressure re KJ of heat energy of th	A Stationary mass of gas is compressed without friction from an initial state of 0.3 m^3 and 0.105 Mpa to a final state of 0.15 m^3 and 0.105 Mpa , the pressure remaining constant during the process. There is a transfer of 37.6 KJ of heat from the gas during the process. How much does the internal energy of the gas change?				5M
3		A piston and cylinder machine contain a fluid system which passes through a complete cycle of four processes. During a cycle the sum of all heat transfer is -170 KJ. The system completes 100 cycles per min. Complete the following table showing the method for each item, and computes the net rate of work output in KW.					
		Process	Heat transfer in KJ/min	Work done in KJ/min	Change in internal energy KJ/min	L3	10M
		1-2	0	2170	-		
		2-3	21,000	0	-		
		3-4	-2,100	-	-36,600		
		4-1	-	-	-		
4	a)	Explain the process.	e First law of Thermod	ynamics' and Justify	y that for non-flow	L2, L5	5M
	b)	Define Stat i) Clausius	tements of second law of statement ii) Kelvin-plan	thermodynamics k statement		L1	5M
5		What is Ste	ady Flow Process? Deriv	ve SFEE for any one e	engineering system	L3	10M
6	a)	Compare he	eat engine and a reversed	heat engine.		L5	5M
	b)	A heat engine receives heat at the rate of 1500 KJ/min and gives an output of 8.2 KW. Determine i) The thermal efficiency ii) The rate of heat rejection.				L3	5M
7	a)	Write a short note on i) reversibility and irreversibility ii) availability and unavailability.				L2	5M
	b)	Analyze the coefficient of performance and heat transfer rate in the condenser of a refrigerator in KJ/h which has a refrigeration capacity of 12000 KJ/h when power input is 0.75KW.				L3	5M
8		A Reversible Heat pump is used to maintain a temperature of 0° C in a refrigerator when it rejects the heat to the surrounding at 25 [°] C. If the heat removal rate from the refrigerator is 1440 KJ/min i) determine the C.O.P of the machine and work input is required. ii) If the required input to run the pump is developed by a reversible engine which receives heat at 380 [°] C and reject heat to atm then determine the overall C.O.P of the system.				L5	10M

<u>UNIT – II</u>

9	a)	Recall short notes on concept of change in entropy.	L1	4M
	b)	Gives an expression for entropy changes for open systems.	L3	6M
10		Explain the following terms		
	a)	What are the limitations of the First law of Thermodynamics?	L1	2M
	b)	Compare steady and unsteady flow process.	L2	2M
	c)	Write some examples of irreversible process.	L1	2M
	d)	Define thermal efficiency of a heat engine cycle.	L1	2M
	e)	Define the term Entropy.	L1	2M

<u>UNIT – III</u>

1		Recall a short note on a) Equation of Ideal gas b) Avogadro laws.	L1	10M
2		Prove that for an ideal gas C_p - C_v =R.	L5	10M
3		Develop the equation used for computing the entropy change of an Ideal	13	10M
		gas.	13	10101
4	a)	State and Explain Dalton law of partial pressure.	L2	5M
	b)	How the partial pressure in gas mixture related to mole fraction?	L4	5M
5		Develop the expression of work transfer for an ideal gas in reversible	L3	10M
		isothermal process.		
6		A cylinder contains a 0.45m^3 of gas at $1 \times 10^5 \text{ N/m}^2$ and 80°C . The gas is		
		compressed to volume of 0.13 m ³ the final pressure being 5×10^5 N/m ²		
		Determine	L3	10M
		i) The mass of gas ii) the value of index 'n' for compression iii) The		
		increase in internal energy of the gas. iv) The heat received or rejected by		
		the gas during the compression. Take $\gamma = 1.4$, R=294.2 J/kg ⁰ C.		
7		A reversible adiabatic process begins at $P_1=10$ bar, $t_1=300^{\circ}C$ and end with	т 1	1014
		$P_2=1$ bar Find the specific volume and the work done per kg of fluid if	LI	10M
		a) the fluid is air b) the fluid is steam.		
8		A fluid at 200 KPa and 300° C has a volume of 0.8 m ³ . In a frictionless	1.2	1014
		process at constant volume the pressure changes to 100 KPa.Find the final	L3	TOM
		temperature and the heat transfer a) the fluid is air b) the fluid is steam.		
9.	a)	What is a polytrophic process?	L1	4M
	b)	A fluid is having a temperature of 150°C and a specific volume of 0.96	T 4	
		m ³ /kg.Find for 1 kg of fluid, the work, heat transferred and final temperature	LI	6M
		if a) the fluid is air b) the fluid is steam.		
10	a)	What is mole?	L1	2M
	b)	What is Avogadro law?	L1	2M
	c)	Define an Ideal gas.	L1	2M
	d)	What is Boltzmann constant?	L1	2M

-

e)

What is an equation of state?

L1 2M

<u>UNIT – IV</u>

1.	a)	Develop an expression for Carnot Cycle and efficiency of cycle.	L3	5M
	b)	A carnot engine working between 400° C and 40° C produce 130 KJ of work.		
		Determine i) The thermal efficiency. ii) the heat added iii) The entropy	L3	5M
		changes during the heat rejection process.		
2.		Develop the expression for air standard efficiency, work done of an otto cycle.	L3	10M
3.	a)	Develop the expression for air standard efficiency for diesel engine.	L3	5M
	b)	The stroke and cylinder diameter of a compression ignition engine are 250mm		
		and 150mm respectively. If the clearance volume is 0.0004m ³ and fuel	ТЛ	5М
		injection take place at constant pressure for 5% of the stroke. Determine the	L4	JIVI
		efficiency of the engine. Assume the engine working on the diesel cycle.		
4		Develop an expression for air standard efficiency of dual combination cycle.	L6	10M
5		The swept volume of a diesel engine working on dual cycle is 0.0053m ³ . The		
		maximum pressure is 65 bar. Fuel injection end at 5% of stroke. The	T /	10M
		temperature and pressure at the stroke of compression are 80^0 C and 0.9 bar.	L4	10101
		Determine efficiency of air take $\gamma = 1.4$.		
6		Build the phase equilibrium diagram for a pure substance P-T plot with	16	10M
		relevant constant property line.	LO	10101
7		Build the phase equilibrium diagram for a pure substance T-S plot with	16	10M
		relevant constant property line.	LU	10101
8	a)	Show the phase equilibrium diagram for a pure substance h-S plot with	12	5M
		relevant constant property line.	L	JIVI
	b)	Show the enthalpy, entropy and volume of steam at 1.4 MPa.	L2	5M
9	a)	Recall a short note on dryness fraction.	L1	5M
	b)	Find the saturation temperature change in specific volume and entropy during	T 1	5M
		evaporation and latent heat of vaporization of steam at 1Mpa 380 ⁰ C.	LI	JIVI
10	a)	What is Pure substance?	L1	2M
	b)	What are saturation states?	L1	2M
	c)	What do you understand triple point?	L2	2M
	d)	What is critical state, critical pressure, and critical temperature?	L1	2M
	e)	What are cyclic and non cyclic heat engine?	L1	2M

UNIT	_	V
------	---	---

1	a)	Classify Boilers.	L4	6M
	b)	Give the comparison between fire tube and water tube boilers.	L4	4M
2		Explain with neat sketch the construction and working of bibcock and	L2	10M

-	-		-	
		Wilcox boiler.		
3		Explain with neat sketch the construction and working of following high pressure boiler a) lamont boiler b) Benson Boiler	L2	10M
4		Explain with help of neat diagram the fire tube boilers of Cochran boilers.	L2	10M
5		Explain with neat sketches of the following boiler mountings a) Water level Indicator b) pressure gauge	L2	10M
6		Explain with neat sketches of the following boiler mountings a) Fusible plug b) Blow off cock	L2	10M
7		Explain with neat sketch of super heater in boiler accessories.	L2	10M
8		Explain with neat sketch of super Economizer in boiler accessories.	L2	10M
9		Explain with neat sketch of super Air preheater in boiler accessories.	L2	10M
10	a)	Define the term availability.	L1	2M
	b)	What is function of boiler mounting?	L1	2M
	c)	How do accessories differ from mounting?	L1	2M
	d)	Define boiler.	L1	2M
	e)	What do you mean Irreversibility?	L1	2M

Prepared by: A Suresh